HONEYWELL/CC-PAIH01 51405038-175
HONEYWELL/CC-PAIH01 51405038-175
如果电路设计出现此问题,则很有可能是使用的传感器的电压输出受到磁耦合干扰。尽管布线可能很短,但如果没有考虑大量的电磁干扰 (EMI),那么模拟信号传递过程可能会将这种干扰直接耦合到测量过程中。在传感器与微控制器 (MCU) 之间建立一条可靠的链路,可使MCU感知到传感器的连接或断开状态。使用电压输出器件时,输出可能被拉至低电压或*断开,而MCU将无法检测到这种差异。
EMI很难消除,而屏蔽、重新布线和采取其他缓解方法会增加设计成本,建议解决方案应侧重于传感器本身。双线电流输出器件本身对电噪声不那么敏感,因此适用于使用中等长度电缆的遥感应用。尽管通过极长的导线发送信号会造成电压损失,但是对于大多数工业和汽车应用而言,采用双线电流输出传感器还是可以接受的。
图2显示了具有双线电流输出的霍尔效应开关,例如 TMAG5124 可以使用接地连接在较长距离内传输信号。在这个例子中,"双线"表示必须将 VCC 和GND从传感器连接到MCU的通用输入/输出。将电流输出特性与更高的精度(磁场工作点和释放点的 2mT 差值)相结合,这样就可实现可靠的设计。
使用电流输出传感器的汽车应用包括:
●安全带插扣。
●座椅位置/占用检测。
●门锁存器。
●驻车制动。
●天窗/后备箱闭合。
●制动踏板。
挑战 3 - 霍尔效应传感器仅对正交磁场敏感
如今,大多数单轴霍尔效应传感器都可以检测与封装表面垂直的磁场。如果需要可以监测平行于封装侧面的磁场的传感器,则选择范围有限。
图3说明了实现水平磁场感应的各种方法。尽管可以使用传统霍尔效应传感器实现水平磁场感应,但存在一些明显的缺点。将标准3引脚小型晶体管 (SOT-23) 封装安装到另一个较小的印刷电路板上,会增加组装成本和复杂性(图 3a)。晶体管轮廓 (TO-92) 封装与标准表面贴装封装的装配过程不同,但这也会增加总体设计成本(图3b)。
如果遇到类似情况,则可以选择TMAG5123-Q1这样的平面霍尔效应开关,它可以检测表面贴装封装侧面的磁场。由于它采用SOT-23封装,也许可以占据更小的空间,因此在机械设计中具有更大的自由度和灵活性(图 3c)。