西门子模块6GK7243-5DX30-0XE0
西门子模块6GK7243-5DX30-0XE0

在一个传统的单载波系统中,使用10 GSPS转换器捕捉1 MHz信号似乎很滑稽,但在多载波软件定义系统中,那可能是设计人员恰恰会做的事情。一个例子是有线机顶盒,其可能采用2.7 GSPS至3 GSPS全频调谐器来捕捉包含数百电视频道的有线信号,每个频道的带宽为数MHz。对于数据转换器而言,噪声频谱密度的单位通常为dBFS/Hz,即相对于每Hz满量程的dB。这是一种相对量度,提供了对噪声电平的某种“折合到输出端”测量。还有采用dBm/Hz甚至dB mV/Hz为单位来提供更为的量度,即对数据转换器噪声的“折合到输入端”测量。
SNR、满量程电压、输入阻抗和奈奎斯特带宽也可用来计算ADC的有效噪声系数,但这涉及到相当复杂的计算,参见ADI公司指南MT-006:“ADC噪声系数——一个经常被误解的参数”。
过采样替代方法
在较高的采样速率下使用ADC通常意味着较高的功耗——无论是ADC自身抑或后续数字处理。表1显示过采样对NSD有好处,但问题依然存在:“过采样真的值得吗?”
如表2所示,使用噪声较低的转换器也能实现更好的NSD。捕捉多载波的系统需要工作在较高采样速率下,因此会对每个载波进行过采样。不过,过采样仍有很多优势。
简化抗混叠滤波——过采样会将较高频率的信号(和噪声)混叠到转换器的奈奎斯特频段内.所以为了混叠影响,这些信号需要在AD转换前被滤波器滤除。这意味着过滤器的过渡带必须位于高目标捕捉频率(FIN)和该频率的混叠(FSAMPLE、FIN)之间。随着FIN越来越接近FSAMPLE/2,此抗混叠滤波器的过渡带变得非常窄,需要*阶的滤波器。2至4倍过采样可大幅减少模拟域中的这个限制,并将负担置于相对容易处理的数字域中。
即便使用完美的抗混叠滤波器,要大程度减少转换器失真产物折叠的影响也会带来不足,在ADC中产生杂散和其他失真产物,包括某些*阶谐波。这些谐波还将在采样频率内折叠,可能返回带内,限制目标频段内的SNR。在较高的采样速率下,所需频段成为奈奎斯特带宽的一小部分,因而降低了折叠发生的概率。值得一提的是,过采样还有助于可能发生带内折叠的其他系统杂散(比如器件时钟源)的频率规划。
调制增益对任何白噪声都有影响,包括热噪声和量化噪声,以及来自某些类型时钟抖动的噪声。
随着速度更高的转换器和数字处理产品的成熟,系统设计人员更频繁地使用一定量的过采样以发挥这些优势,比如噪底和FFT。