通信电缆 网络设备 无线通信 云计算|大数据 显示设备 存储设备 网络辅助设备 信号传输处理 多媒体设备 广播系统 智慧城市管理系统 其它智慧基建产品
深圳市飞瑞斯科技有限公司
暂无信息 |
阅读:723发布时间:2014-12-29
人脸识别的研究可以追溯到20世纪60年代,近20年来得到了迅速发展,涌现出了很多新的方法。这些方法的有效性很大程度上取决于它们所提取的人脸特征。目前可利用人脸特征可分为四类:视觉特征,统计特征,变换系数特征和代数特征等。其中,代数特征被认为是人脸的本质特征,表征了人脸图像的内在特性。
目前典型的代数特征主要包括奇异值特征和本征脸特征等。本征脸技术比较成熟,但其计算较为复杂,因此国内关于代数特征的研究主要集中于奇异值特征上Hong在文献中首先提出了经典的基于奇异值特征的人脸识别方法,把人脸图像视为一个矩阵,进行奇异值分解从而提取其奇异值特征,并投影到Foley2Sammon*鉴别平面进行识别,但在实验中误识率为42.67%,Hong认为是小样本对统计方法的影响。随后许多人提出了消除小样本统计方法的影响的方法,但是这些方法均采用人脸的奇异值特征取代原始的人脸图像。
QR分解在人脸识别中的应用针对维数压缩中的鉴别信息提取,对一种已有的解决小样本问题的直接线性鉴别分析方法 ,利用矩阵的QR分解实现数据的预处理,并且在低维的空间内实现了特征提取,实现算法的实时处理。zui后,在ORI人脸数据库上的实验结果验证方法的有效性。
所有人脸识别方法的有效性都依赖于两方面:特征提取和特征匹配.特征提取,即寻找有效的特征,是解决识别问题的关键所在.用于识别的图像特征有多种,包括视觉特征、统计特征、变换系数特征以及代数特征等.其中,代数特征是由图像本身的灰度分布所确定的,它描述了图像的内在信息,而这种内在信息对增强图像的识别能力是非常重要的.奇异值就是一种很有效的代数特征,所以奇异值分解在数据压缩、信号处理和模式分析等许多方面都获得广泛应用.在某种程度上,奇异值特征同时拥有代数与几何两方面的不变性。
智慧城市网 设计制作,未经允许翻录必究 .
请输入账号
请输入密码
请输验证码
请输入你感兴趣的产品
请简单描述您的需求
请选择省份